• #algorithms(4) • #applied-ml(1) • #computational-graph(3) • #computer-vision(2) • #deep-learning(2) • #distributed-computing(1) • #distributed-systems(1) • #machine-learning(11) • #optimisation(4) • #probability(3) • #probability-theory(1) • #ranking(1) • #search(1) • #statistics(1) • #stories(2)
#algorithms
[notes] Knapsack[notes] Quick Select
[posts] Finding Median
[posts] Binary Search
#applied-ml
[notes] Movie Reviews and Gradient Descent#computational-graph
[notes] Gradient Through Concatenation[notes] Gradient Through Addition with Broadcasting
[posts] Differentiable Computations
#computer-vision
[notes] Canny Edge detector[notes] Histogram of Oriented Gradients
#deep-learning
[notes] Common Optimisers[notes] Focal Loss
#distributed-computing
[notes] Reservoir Sampling#distributed-systems
[links] Evolution of Search Engines#machine-learning
[posts] XGBoost[posts] Normalisation Layers
[posts] Variational Inference
[notes] Gradient Boosting
[notes] Attribute Selection in Decision Trees
[notes] Bias and Variance
[notes] Common Optimisers
[notes] Focal Loss
[notes] Softmax Classifier
[notes] Linear Classifiers
[notes] Bayes Error
#optimisation
[posts] Variational Inference[notes] KKT conditions and Lagrange multipliers
[notes] BFGS
[notes] Newton's Method
#probability
[posts] Sampling in a Sphere[posts] Variational Inference
[notes] Reservoir Sampling
#probability-theory
[links] Diffusion Models#ranking
[notes] RankNet and LambdaRank#search
[notes] RankNet and LambdaRank#statistics
[posts] Sampling in a Sphere#stories
[stories] Productivity Principles[stories] Logic Bulling